Function to generate an MCMC model for use with Stan.
- Source:
Methods
-
<inner> addCentralizedParameter_mean(name, withLoc, n, nScales [, nName], limits)
-
Add variables for a centralized mean
Parameters:
Name Type Argument Description namestring name of variable
withLocboolean whether to include a location data variable
ninteger array size, or 1 for a scalar
nScalesinteger number of scale parameters; 1 = same scale for each item in array; n = one scale parameter for each item.
nNamestring <optional>
optional name for array size (to be used in place of n in some places)
limitsstring a limits modifier ("" if no limits)
- Source:
-
<inner> addLiquid(model, k, spec)
-
Add a liquid to the model.
Parameters:
Name Type Description modelobject the model
kstring liquid name
specobject concentration specification
Properties
Name Type Argument Default Description typestring <optional>
"fixed" set to "fixed" for a concentration, "normal" for a normally distributed concentration. If set to "normal", you will need to supply the "loc" and "scale" values as input data when running Stan.
valuenumber <optional>
0 if fixed, this is the fixed concentration - otherwise the parameters will be estimated.
- Source:
-
<inner> aspirate(model, args)
-
Add an aspiration operation to the model.
Parameters:
Name Type Description modelobject the model
argsobject Properties
Name Type Description pstring the name of the pipetting parameters
tnumber | string the tip identifier
dnumber volume in microliters
wellstring the well name
- Source:
-
<inner> assignLiquid(model, well, k)
-
Assign a liquid to a well in the model.
Parameters:
Name Type Description modelobject the model
wellstring the well name
kstring the liquid name
- Source:
-
<inner> createEmptyModel(subclassNodes, betaDs, gammaDs)
-
Create the initial empty model. You will add pipetting and measurement actions will be added to.
Parameters:
Name Type Description subclassNodesArray.<number> sorted volumes after which a subclass starts (e.g. for subclasses 3-15,15.01-500,500.01-1000, subclassNodes = [3,15,500,1000])
betaDsArray.<number> volumes for which we want a beta parameter (dispense bias)
gammaDsArray.<number> volumes for which we want a gamma parameter (unintended dilution)
- Source:
Returns:
an object with mostly empty properties representing the model's random variables and labware.
- Type
- object
-
<inner> dispense(model, args)
-
Add a dispense operation to the model.
Parameters:
Name Type Description modelobject the model
argsobject Properties
Name Type Description pstring the name of the pipetting parameters
tnumber | string the tip identifier
dnumber volume in microliters
wellstring the well name
- Source:
-
<inner> measureAbsorbance(model, wells)
-
Add an absorbance measurement to the model.
Parameters:
Name Type Description modelobject the model
wellsArray.<string> the names of the measured wells
- Source:
-
<inner> measureWeight(model, l)
-
Add a weight measurement to the model.
Parameters:
Name Type Description modelobject the model
lstring the labware name
- Source:
-
<inner> printModel(model [, basename])
-
Print the Stan model to stdout, and save a
basename.R file that holds indexes to associate the random variables back to labware.Parameters:
Name Type Argument Default Description modelstring the model
basenamestring <optional>
"stanModel" the basename for the R output
- Source: